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the phase of the internal non-Abelian moduli? We find that the answer to these questions
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1 Introduction

Since the first appearance of the non-Abelian vortex [1, 2], two major lines of research have

been pursued. One, which is also the main focus of the present paper, is to understand,

and make use of, the relationship between the four-dimensional gauge dynamics, and the

wordsheet dynamics, of the zero modes confined to live on the vortex. A second line, which

will be the main focus of future work [3], is to understand the dynamics of non-Abelian

magnetic monopoles in relation to that of the non-Abelian string.

Non-Abelian vortices provide a way to map a four-dimensional non-Abelian gauge the-

ory onto a two-dimensional sigma-model. The non-Abelian gauge theory has nc colors and

nf flavors, and through the introduction of an appropriate Higgs breaking term, generally

a Fayet-Iliopoulos (FI) term, lives in a so-called color-flavor locked vacuum, or root of

the baryonic branch. Non-Abelian gauge theories in the color-flavor locked phase have, in

general, stable vortices, like the ordinary Abrikosov-Nielsen-Olesen flux tube, but with the

addition of a number of orientation internal modes, parametrized by the complex projective

space CP(nc − 1). The low-energy dynamics of an infinite-length vortex is described by

some variant of the CP(nc−1) sigma-model living on the d = 1+1 dimensional worldsheet.

Additional modes, in particular the fermionic ones, live in line-bundles over CP(nc − 1).

The main focus of the paper will be on the case of the number of colors equal to the number

of flavors: nc = nf = n.

In general, the low-energy theory on the string worldsheet is split into two disconnected

parts: a free theory for (super)translational moduli and a nontrivial part, a theory of

interacting (super)orientational moduli, the CP(n − 1) sigma-model. The latter theory is

in general completely fixed if there are unbroken supersymmetries.

– 1 –
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The situation is by now quite clear for N = 2 SQCD [18–20, 25]. Due to holomorphic

properties, quantities such as the mass of the BPS particles, do not depend upon the FI

term. This means that these invariant quantities can be computed in two different ways.

One through the Seiberg-Witten solution of the original four-dimensional theory, and the

other through the solution of the N = (2, 2) that lives on the string worldsheet.

It was suggested in [6] the possibility of lowering the supersymmetries of the four-

dimensional theory down to N = 1, but still keeping the BPS property of the string. That

can happen, classically, if we introduce a superpotential for the adjoint chiral superfield

W (Φ), and we fine-tune the parameters so that one root of W ′ coincides with the mass of

the quarks. The theory on the vortex worldsheet preserves half of the supercharges of the

four-dimensional theory, and that means that it is N = (0, 2) or N = (2, 0) depending on

the vortex orientation. From here comes the name heterotic. The number of fermionic zero

modes though, does not change because it is fixed by an index theorem. That means that

these extra fermions remain in the low-energy theory and must be described by a fermionic

N = (0, 2) multiplet. In the work [7], it was shown how to construct the N = (0, 2) theory

living on the vortex worldsheet. The four-dimensional superpotential essentially enters as a

worldsheet superpotential for the fermionic N = (0, 2) superfield. It is important here that

there is a mixing between translational and orientational zero modes; otherwise, it would

not be possible to break the N = (2, 2) supersymmetries on the worldsheet [6]. At least

with a small value of the superpotential, the deformation of the 1+1 theory can be simply

obtained by the superpotential of the original four-dimensional theory with an appropriate

coefficient that can be computed by a four-dimensional zero-mode overlap [7, 10].

This paper is devoted to the study of the heterotic vortex, and its quantum-related

problems. The analysis of the problem was initiated in [8, 9], but many issues remain to be

explored. The holomorphic properties discussed above for the N = 2 theory are now lost.

We thus do not expect to find exact analytical agreement between quantities computed in

various regions of the parameters’ space. But we nevertheless expect to find qualitative

agreement in various physical interesting questions.

We shall concentrate on the most studied theory, U(n) N = 2 gauge theory with the

number of flavors equal to the number of colors. There are two possible deformations of the

theory we shall be interested in. One is to give a mass to the adjoint fields, a superpotential

term like ∫
d2θ

√
2µ Tr

Φ2

2
+ h.c. . (1.1)

The other deformation is a Fayet-Iliopoulos term

− 2ξ

∫
d2θd2θ̄ TrV . (1.2)

All we shall do in this paper is play with these two parameters, µ and ξ, and study the

various dynamics that appear.

In figure 1, we present the square of the deformation parameters and, in particular,

the four corners where the theory can be most easily be analyzed. The goal of the paper

is to analyze various phenomenological regimes of the strings, at four different corners, try

– 2 –
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Figure 1. We have two parameters to play with: the mass µ and the FI term
√
ξ. The four

corners are the ones where some quantitative analysis can be carried out.

to make sense of the various results. Since the difficulties we shall deal with are those of

strong-coupling regime, the only possible regions where we can safely analyze the theory

are in the four corners. Let us now explain them briefly.

(A) This is the region where the theory is N = 2 essentially undeformed, until energies

well below the dynamical scale:

√
ξ , µ≪ Λ . (1.3)

Quantum effects can be treated using the Seiberg-Witten (SW) solution. Perturba-

tions are then added to the thus-obtained low-energy effective Lagrangian. We shall

refer to this region as the perturbed N = 2, or perturbed SW corner.

(B) Starting from the previous corner, we increase the mass µ, until it becomes much

greater than the dynamical scale:

√
ξ ≪ Λ ≪ µ . (1.4)

We can then use the known results about strong dynamics of N = 1 SQCD. At

energies much smaller than the dynamical scales, the degrees of freedom are the

gauge singlet mesons Q̃Q and baryons B = ǫQ . . . Q, B̃ = ǫQ̃ . . . Q̃. As long as we

remain in the small FI limit, everything is weakly coupled, and we can introduce it

as a perturbation to this low-energy effective theory.

(C) As the FI term becomes larger, we eventually end up in the corner defined by:

µ,Λ ≪
√
ξ . (1.5)

– 3 –
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The 3 + 1 dynamics is Higgsed at high energy, much above the dynamical scale.

Dynamics survive only inside the 1 + 1 worldsheet of the non-Abelian vortex. The µ

deformation is then added at low-energy. This is the heterotic vortex string corner.

(D) The last corner is the one where both deformations are much grater than the dynam-

ical scale;

Λ ≪
√
ξ ≪ µ . (1.6)

This is the most difficult region to analyze, and less explored. Although the gauge 3+1

dynamics is Higgsed at the weak coupling, not all particles in the bulk acquire mass.

Some of them, corresponding to the mesonic moduli, have mass well below ΛN = 1 .

The worldsheet dynamics is generically entangled with these 3+1 dimensional effects.

We shall first give a reasonable discussion of corners (A), (B), and (C). We shall also see

that the various results agree, at least qualitatively. Since the various corners are separated

by regions where their respective treatments and approximations fail, we certainly cannot

expect quantitative agreement between the various results. But at least we expect, and we

shall find, a coherent explanation with respect to these two basic questions:

1. Is the vortex BPS or is the supersymmetry broken?

2. What is the phase of vortex ground state?

Another important aspect, is that the answers to the previous two questions strongly

depend upon the choice of the linear term in the superpotential

∫
d2θ

√
2µ Tr

(
Φ2

2
− aΦ

)
+ h.c. . (1.7)

For the generic value of the coefficient a, the vortex is non-supersymmetric and the phase

on its worldsheet is confining. For the particular case a = 0, we have n degenerate ground

states, with non-zero energy. Kinks correspond to the quanta of orientational moduli, and

thus we lose confinement, but we still break supersymmetry. For a particular choice,

a ∼ Λe
i 2πk

n , (1.8)

with k = 1, . . . n, one of the n strings reaches zero energy. We thus have a BPS string with

confinement. This superpotential is very peculiar because with this we have a supersym-

metric heterotic vortex. We shall confirm this in all the three corners (A), (B), and (C).

In particular, we shall find enhancement of supersymmetry in the region (C).

As µ goes to infinity, some of the fermionic zero modes become broader and broader

and finally non-normalizable in the N = 1 limit. The reason is the appearance of the

additional massless particle, or equivalently, of the Higgs branch. It thus becomes tricky

to disentangle the 3 + 1 dynamics from the 1 + 1 one. We cannot say, as we are used to in

the N = 2 case, that at energy scales lower than the FI scale, all the 3 + 1 excitations are

gaped and the only non-trivial dynamics live on the string worldsheet. The 1 + 1 theory

becomes reliable at a scale much lower than the FI one. In particular for sufficiently large

– 4 –
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µ, this scale becomes smaller than the dynamical scale. As µ→ ∞, no 1 + 1 approach can

be said to be reliable.

The paper is organized as follows. In section 2, we present some preliminary material

about the non-Abelian vortex-string. This is a review part; we decided to collect the

needed material in a mini-review, in order to facilitate the rest of the exposition.1 In

sections 3, 4, 5, and 6, we discuss, respectively, the various corners in the parameters space

(A), (B), (C), and (D). In the final section 7, we summarize and conclude by discussing

some of the future directions.

2 Preliminaries

We now provide some basic information and results about the non-Abelian theory and

its non-Abelian vortex. This section is meant to be a quick review of the most important

results we shall need in the bulk of the paper. We shall discuss the basic example, the U(nc)

N = 2 super-QCD with nf ≥ nc fundamental flavors. We then consider the deformation of

this theory with the FI term, and the superpotential for the adjoint field. The non-Abelian

string arises in the color-flavor locked vacuum, also-called the root of the baryonic branch.

We focus in particular on the nc = nf = n case, and introduce the non-Abelian CP(n− 1)

moduli that live on the vortex worldsheet. We discuss the basic techniques to detect and

study the bosonic and fermionic zero modes of the string. We in particular focus on the

case of coinciding quark masses and the root of the derivative of the superpotential. This

is the case when the vortex preserves half of the supercharges, and the effective worldsheet

theory is the N = (0, 2) heterotic vortex theory. On the way, we refer to the literature,

where more detailed descriptions of each topic can be found.

The non-Abelian U(nc) N = 2 theory has gauge vector multiplet Wα,Φ and nf fun-

damental hypermultiplets Q, Q̃†. The physical fields are, respectively,

Aµ

λ ψ

φ

ψq

q q̃ †

ψ†
eq

. (2.1)

The Lagrangian in the N = 1 superfield formulation is as follows:

L =

∫
d2θd2θ̄

2

g2
Tr (Φ†eV Φe−V ) +

nf∑

i=1

(Q†
ie

VQi + Q̃ie
−V Q̃†i) +

+Im

∫
d2θ

τ

4π
Tr (WαWα) +

[∫
d2θW(Φ, Q, Q̃) + h.c.

]
, (2.2)

where the coupling is

τ =
4πi

g2
+

θ

2π
, (2.3)

the superpotential is

W(Φ, Q, Q̃) =

nf∑

i=1

√
2(Q̃iΦQ

i −mQ̃iQ
i) , (2.4)

1See [29, 30] for more extensive reviews.
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and m are the masses for the flavors with the index i = 1, . . . , nf . We shall consider

only the case of degenerate masses. The parameter m can be absorbed in a shift of the

coordinate Φ, but we shall keep it explicit.

We can break half supersymmetries, N = 2 down to N = 1 , by adding a superpotential

W (Φ) for the adjoint field Φ. The total superpotential becomes

W(Φ, Q, Q̃) =

nf∑

i=1

√
2(Q̃iΦQ

i −mQ̃iQ
i) +

√
2TrW (Φ) , (2.5)

where W (z) is a generic holomorphic function. We shall be interested only in the quadratic

superpotential

W (z) = µTr

(
Φ2

2
− aΦ

)
. (2.6)

The linear term, with coefficient a, shall play an important role in what follows.

The running of the coupling constant is given by

Λγnc−nf = µ
γnc−nf

RG e−2πi τ(µRG ) , (2.7)

where Λ the dynamical scale, µRG the renormalization group scale, and γ = 2 or 3 for,

respectively, N = 2 and N = 1 . The matching of the dynamical scales between the N = 2

and N = 1 theories is given by

Λ
3nc−nf

N = 1 = µncΛ
2nc−nf

N = 2 . (2.8)

This can be inferred by running of the coupling constants or equivalently by the U(1)R
anomaly charges. For the case we shall be most interested in, this is Λ2

N = 1 = µΛN = 2 .

We now add the Fayet-Iliopoulos term (1.2). This term lifts completely the Coulomb

branch of the moduli space, leaving only the vacuum where φ = 0 and the Higgs branch

attached to it. In the case of coinciding root of W ′ and the quarks masses, a = m, we

have:

〈q〉 =




√
2ξ 0

. . .
. . .√

2ξ


 ,

〈q̃〉 = 0 . (2.9)

The breaking of the global symmetries of the Lagrangian is

SU(nc) × SU(nf ) → SU(nc)c+f × U(nf − nc) . (2.10)

The theory lies in the color-flavor locked phase, with the vacuum expectation value pre-

served by a simultaneous gauge and flavor rotation; from here comes the subscript c+f.

To get the masses of the scalar bosons, we expand the potential near the vacuum,

and diagonalize the corresponding mass matrix [6]. The scalar q becomes a partner of the

massive gauge bosons through the super-Higgs mechanism, and has mass

mAµ = g
√

2ξ . (2.11)

– 6 –
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Other scalar fields q̃, φ acquire mass too. When the N = 2 supersymmetry breaking

vanishes, the masses coincide with the gauge boson mass and the corresponding states

form the bosonic part of the N = 2 long massive vector supermultiplet. With non-zero

µ, this supermultiplet splits into a massive vector multiplet and two chiral heavy and

light multiplets.

In the limit of large N = 2 supersymmetry breaking µ ≫ g
√
ξ, these light and heavy

masses become

mh =
√

2 gµ , ml = 2
√

2
ξ

µ
. (2.12)

The heavy one, mh, is the mass of the heavy adjoint scalar φ. Integrating out the adjoint

field, we have Φ = QQ̃/µ+ a, and the effective superpotential is

Weff = −
√

2Tr

(
1

2µ
QQ̃QQ̃+ (m− a)QQ̃+

µa2

2

)
. (2.13)

In the limit of infinite µ, the ml masses tend to zero. This fact reflects the enhancement

of the Higgs branch in N = 1 SQCD.

The same thing happens when the FI term is absent [4]. The only difference is that

at the base of the Higgs branch ml is always zero. The q̃q direction is lifted, but by a

sixth-order potential.

Now we study the non-Abelian BPS vortex at the root of the Higgs baryonic branch.

We set φ = 0 and q̃ = 0, and ignore any interference of these fields for the moment. We can

certainly do that in the case where the superpotential is absent. The part of the Lagrangian

we are interested in is

L = − 1

2g2
Tr (FµνF

µν) + (Dµq)
†(Dµq) − g2

4
Tr (qq† − 2ξ 1n)2 . (2.14)

The central U(1) ⊂ U(nc) does not survive the breaking (2.9), and this provides sufficient

topology to ensure the presence of the vortex in the theory.

We write the tension of the vortex using the Bogomolny trick

T = TBPS+

∫
d2x

1

2
(Dkq+iǫklDlq)

†(Dk+iǫklDlq)+
1

2
Tr

(
1

g
Fkl+

g

2
(qq†−2ξ)ǫkl

)2

, (2.15)

where the lower bound is a boundary term

TBPS = 2ξ

∮
d~x · Tr ~A . (2.16)

This term saturates the tension when the non-Abelian Bogomolny equations

Dkq + iǫklDlq = 0 ,
1

g
Fkl +

g

2
(qq† − 2ξ)ǫkl = 0 (2.17)

are satisfied.

– 7 –
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To build the vortex configuration, we embed the ordinary U(1) vortex in this theory.

All such embeddings are U(nc) rotations of

q =




eiθq(r)
√

2ξ 0
√

2ξ
. . .

. . . √
2ξ



, (2.18)

Ak =




−ǫkl
r̂l

r f(r)

0
. . .

0



,

where q(r) and f(r) are some profile functions that satisfy the boundary conditions q(0) =

f(0) = 0 and q(∞) = f(∞) = 1. The nc independent vortices constructed this way are

degenerate with tension. These are the non-Abelian vortex equations. Solutions to these

equations have tension

T = 4πξ (2.19)

Note that this is 1/nth of the tension of the ANO vortex, TANO = 4nπξ, which is obtained

by a simultaneous winding of all the diagonal components of q.

The vortex solution (2.18) classically breaks the residual global symmetry (2.10). This

leads to the existence of a moduli space. When nf = nc, we can find other equivalent

solutions by taking the (2.18) and making the following transformation

q → Uc q U
−1
f , Aµ → Uc Aµ U

−1
c , (2.20)

with a color-flavor locked rotation Uc = Uf in order to preserve the asymptotic vacuum.

The moduli space of solution is then given by the coset space

CP(n − 1) =
SU(n)c+f

U(1) × SU(n − 1)
. (2.21)

We can express the vortex solution in a way that makes manifest these bosonic moduli, by

going to the singular gauge:

qa
i =

(
ϕaϕ̄i

β

) √
2ξ(q(r) − 1) +

√
2ξδa

i ,

(Ak)ab =

(
ϕaϕ̄b

β

)
ǫkl
r̂l
r

(1 − f(r)) . (2.22)

The ϕl ∈ C
nc defines the orientation of the vortex in the gauge and flavor groups.

We require
n∑

i=1

|ϕl|2 = β , (2.23)

– 8 –
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with β a constant that will be fixed in order to have canonical normalization for the kinetic

term of ϕ. The solutions (2.22) are invariant under the simultaneous rotation,

ϕl → eiαϕl . (2.24)

The ϕi, subject to the constraint (2.23) and identification (2.24), provide homogeneous

coordinates on the projective space CP(nc − 1). The SU(nc) symmetry of four dimensions

descends to the vortex string, with the ϕi transforming in the fundamental representation.

When nf > nc, other zero modes are present in our theory. In particular, among the

classical solutions for nf > nc, there are semi-local vortices. These solitons interpolate

between Nielsen-Olesen-like vortices and sigma-model lumps on the Higgs branch of the

theory.

In the case of no-coincidence, i.e. W ′(m) 6= 0, we cannot neglect the q̃ field. In the limit

of a small superpotential though, we can still perform the computation just replacing φ = 0.

This is an approximation that becomes exact in the limit of small superpotentials [13]. The

scalar potential of the theory is

V = g2Tr |qq̃ +W ′(m)|2 +
g2

4
Tr (qq† − q̃†q̃ − 2ξ)2 , (2.25)

This may be expressed in an SU(2)R invariant form using the doublet qα = (q, q̃†):

V =
g2

2
Tr nTr 2

(
q†

α
qβ − 1

2
δα
β q

†γqγ − ζa(σa)
α
β

)2

, (2.26)

where ζa is the SU(2)R triplet defined by

− ζ1 + iζ2 = W ′(m) , ζ3 = ξ . (2.27)

An SU(2)R rotation brings the potential to a form with a new FI term and no superpotential

V =
g2

4
Tr (qq† − q̃†q̃ − 2ξ ′)2 , (2.28)

where ξ ′ =
√
|W ′|2 + ξ2.

We can now use the rotated potential (2.28) and write a solution for the vortex. The

tension will be

T = 4π
√

|W ′|2 + ξ2 . (2.29)

As explained in [13], in the limit

g2
∣∣∣W ′ ′2W ′2

∣∣∣≪
(
|W ′|2 + ξ2

)3/2
, (2.30)

we can neglect the φ field and use the potential (2.28) to construct an almost-BPS vortex

with tension 4πξ ′. For W sufficiently small, the condition (2.30) is satisfied. The point is

that non-BPS corrections vanish faster than the main BPS contribution. We shall use this

trick in section 3, to compute the vortex tension in the SW regime.

– 9 –
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Now we will study the effective low-energy theory on the string worldsheet. For the

basic Abrikosov-Nielsen-Olesen vortex, this consists just of the tranversal fluctuation of the

vortex, when embedded in space-time. The zero mode is the one generated by the broken

translations operators, acting on the vortex solution. The coefficient in front of the kinetic

term, is just the tension of the vortex. In the low-energy limit, these fluctuations are just

described by free scalar and fermionic fields on the worldsheet.

The most interesting feature of the non-Abelian vortex is the presence of orientational

zero modes ϕi, and these too we must be considered in an effective low-energy description

of the soliton fluctuations. Since these are parametrized by a CP(n − 1) space, we expect

a version of the CP(n − 1) model. What makes it interesting is that the dynamic in the

infrared is now non-trivial and generally strongly coupled.

Assume that the orientational collective coordinates ϕi are slow varying functions of

the string worldsheet coordinates x0,3. Then ϕl become fields in a (1+1)-dimensional sigma

model on the worldsheet. Since the vector ϕl parametrizes the string zero modes, there

is no potential term in this sigma model. The effective action, in the so-called gauged

formulation, is thus

S1+1 =

∫
d2x
{
|∇kϕ

l|2 +D(|ϕl|2 − β)
}
, (2.31)

where ∇k = ∂k − iAk. The auxiliary gauge field Aµ is necessary in order to make the

phase (2.24) unphysical. Eliminating the D auxiliary field leads to the constraint (2.23).

As we said, we chose to normalize ϕl in order to have a canonical kinetic term. In this

way, the inverse of the coupling constant appears as the radius of the CP(n− 1) manifold,

r2 = β.

There are also other formulations of this model, in particular the so-called geometric

formulation. The last has no auxiliary fields, and the interactions are explicitly given by

the geometry of the sigma-model manifold. The gauge formulation is the only one that

we shall use in this paper. It is particularly useful because the auxiliary fields become

dynamical through quantum corrections, and, in particular, it can be solved exactly in the

large-n limit.

There is an important issue we want to stress. The zero mode analysis can allow us to

compute the coefficient in front of the kinetic term. Symmetries allow us to complete the

Lagrangian, and infer the structure of interactions.

The study of the vortex theory makes sense only if the four-dimensional theory is still

at weak coupling when the Higgs breaking happens. The condition is

β0 =
2π

g(
√
ξ)2

=
n

4π
log

√
ξ

Λ3+1
+ · · · ≫ 1 . (2.32)

The coupling of the vortex theory is fixed by the coupling of the four-dimensional theory,

but computed at the scale of the vortex, that is,
√
ξ. A classical computation provides the

relationship between the worldsheet coupling β and the four-dimensional gauge coupling [2].

What happens at energy scales lower than
√
ξ, depends on the details of the theory.

Usually, but not always, the 3 + 1-dimensional degrees of freedom are gaped and do not

alter the vortex theory below the scale
√
ξ. It is just a simple passage of the baton, the
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3 + 1 dynamics runs until the scale
√
ξ, and then the 1 + 1 dynamics starts its running.

The two dynamical scales are essentially the same

ΛCP ∼ Λ3+1 . (2.33)

There is an important exception to this, to be discussed in section 6.

We now turn to a study of the fermionic zero modes in the vortex background. We

will pay particular attention to the correlation between the chirality of the worldsheet and

that of the four-dimensional fermions. These issues become very important in the study of

the heterotic vortex [7].

The N = 2 vector multiplet in four dimensions contains the two Weyl fermions, λ and

ψ. Each hypermultiplet also contains two Weyl fermions, ψq and ψeq. We need to consider

the Dirac equations in the background of the vortex:

− i

g2
/̄∇λ− i

√
2

g2
[ψ̄, φ] + i

√
2qiψ̄q i − i

√
2ψ̄eq iq̃i = 0

− i

g2
/̄∇ψ − i

√
2

g2
[φ, λ̄] −

√
2q̃ †i ψ̄q i −

√
2ψ̄eq iq

†
i =

√
2W

′′

(φ)ψ̄ (2.34)

and

− i /̄∇ψq i + i
√

2λ̄qi −
√

2φ†ψ̄eq i −
√

2ψ̄q̃ †i = 0

−i /̄∇ψeq i − i
√

2q̃iλ̄−
√

2ψ̄q iφ
† −

√
2q†i ψ̄ = 0 . (2.35)

The superpotentialW (φ) enters only in the Dirac equation for ψ, the superpartner of φ. We

consider the vortex to be static, and oriented in the positive x3 direction. We decompose

the spinors as (λL, λR). The derivative is

/̄∇ = (σ̄µ)αα̇∇µ = −
(
∇0 + ∇3 = ∇R ∇1 − i∇2 = ∇z

∇1 + i∇2 = ∇z̄ ∇0 −∇3 = ∇R

)
(2.36)

We call λR the right movers since ∇L acts on them, and L the left movers because ∇R

acts instead. Fermionic zero modes of the Dirac equations (2.34) and (2.35) must then be

interpreted as massless fermions localized on the 1 + 1 vortex effective action.

In the N = 2 limit, we have W (φ) = 0, and φ = q̃i = 0 for the vortex solution. The

equations decouple into two pairs: the first set of equations are for λ and ψq i, and the

second set of equations are for ψ and ψeq i. Each pair of four-dimensional fermions gives a

Fermi zero mode on the vortex of a specific worldsheet chirality. In particular, zero modes

of the first pair live in the components λ = (0, λR), ψq i = (ψq L i, 0), and give the right-

handed fermions on the vortex worldsheet. All the zero modes of the second pair live in

the components ψ = (ψL, 0), ψeq i = (0, ψeq R i) and give the left-handed fermions. Each of

these pairs of equations, as a consequence of supersymmetry, is the same as the equations

for bosonic zero modes, derived by linearizing the vortex equations and imposing a gauge

fixing constraint.
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The low-energy dynamics of the vortex string arise by promoting the collective coor-

dinates z, ζR,L and ϕl, ξl
R,L to dynamical fields on the string worldsheet. The fact that the

vortices are BPS, preserving 1/2 of the N = 2 four-dimensional supersymmetry, ensures

that the resulting worldsheet dynamic is invariant under N = (2, 2) supersymmetry. The

various bosonic and fermionic collective coordinates are grouped into N = (2, 2) chiral

superfields Z and Φl:
z

ζL ζR
,

ϕl

ξl
L ξl

R

. (2.37)

The constraint ϕ̄lϕ
l = β together with the identification (2.24) are imposed on the world-

sheet theory by introducing an auxiliary N = (2, 2) vector supermultiplet:

σ

χL χR

Aµ

, (2.38)

That also will impose a constraint on the fermion ξl(L,R).

We now give the explicit formulation for the N = (2, 2) CP(n − 1) sigma-model. We

skip the super field formulation, which can be found in the given references, and just present

the final result in terms of fields. The bosonic part of the action takes the form

SCPbos =

∫
d2x

{
|∇kϕ

l|2 − 1

4e2
F 2

kl +
1

e2
|∂kσ|2 +

1

2e2
D2

−2|σ|2|ϕl|2 +D(|ϕl|2 − β)

}
, (2.39)

where Fkl = ∂kAl − ∂lAk. σ is a complex scalar field that is necessarily part of the gauge

supermultilpet containing Aµ, and D is the D-component of the gauge multiplet. We also

wrote explicitly a gauge kinetic term for the gauge supermultiplet. In the limit e2 → ∞,

the gauge field Ak and its N = 2 bosonic superpartner σ become auxiliary (their kinetic

terms vanish) and can be eliminated by virtue of the equations of motion. The classical

action has no gauge kinetic term (e2 = ∞). It will be generated, in general, by quantum

corrections.

The fermionic part of the CP(n − 1) model action has the form

SCP ferm =

∫
d2x

{
ξ̄R l i∇Lξ

l
R + ξ̄L l i∇Rξ

l
L +

1

e2
χ̄R i∇LχR +

1

e2
χ̄L i∇RχL

−
√

2 σ̄ ξ̄l Rξ
l
L −

√
2 ϕ̄l (ξ

l
LχR − ξl

RχL) + h.c.

}
, (2.40)

where the fields ξl
L,R are fermion superpartners of nl while χL,R belong to the gauge mul-

tiplet. In the limit e2 → ∞, the fields χL,R become auxiliary, implying the following

constraints:

ϕ̄l ξ
l
L = 0, ϕ̄l ξ

l
R = 0 . (2.41)

We finally consider the case of superpotential different from zero. We consider the

case of classical coincidence, so that the vortex is BPS and φ = q̃ = 0. Equations for the
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fermionic zero modes λ and ψq i are unchanged, and they still provide the fermionic modes

ζR and ξR. Their profile functions are unchanged, and in particular always confined in a

radius ∼ 1/
√
ξ.

The fermionic zero modes for ψ and ψeq i are instead modified by the presence of

the superpotential;

− i

g2
/̄∇ψ −

√
2ψ̄eq iq

†
i =

√
2µψ̄

−i /̄∇ψeq i −
√

2q†i ψ̄ = 0 . (2.42)

However, they still provide fermionic zero modes. Due to the index theorem, we can

immediately infer that these zero modes, although modified, must still be present and

considered in the effective action. Solutions for these zero modes have been studied in [10]

in the two limits of µ deformation very small or very large, with respect to
√
ξ. We can

use an expansion in powers of µ/
√
ξ and have ψ = (ψ(0)

L , ψ(1)

R ) and ψeq = (ψ(1)

eq L , ψ
(0)

eq R).

The worldsheet N = (0, 2) supersymmetry is generated by the two right-moving su-

percharges Q1
R, while the left-moving Q1

L supersymmetries are explicitly broken by the

vortex solution. The extended supercharge Q2 = (Q2
L, Q

2
R) are instead broken by the su-

perpotential W (Φ). In the absence of the superpotential, the N = (2, 2) supersymmetry

on the wordsheet is generated by (Q2
L, Q

1
R). The fact that the left and right generators

are orthogonal in the SU(2)R space is clearly visible from the fact that the left and right

fermionic zero models come from totally disconnected Dirac equations, the ones for ψ,ψeq i

and the ones for λ, ψq i. That is also the basic reason why, when N = 2 is broken to N = 1,

the supercharges on the worldsheet are not N = (1, 1) but N = (0, 2) or N = (2, 0). An

important feature of (0, 2) theories is the existence of a fermionic multiplet Γ, containing

only left-moving fermions χL and no propagating bosons. The fermions can live in any

representation of the gauge group, like chiral multiplets, and, in particular, it is possi-

ble introduce a superpotential J(Φ), a function of the chiral superfields, for each Fermi

multiplet Γ [28].

Edalati and Tong (ET) proposed the N = (0, 2) worldsheet deformation induced by

the superpotential W (Φ). In their construction, the N = (2, 2) model (2.39), (2.40) is

supplemented by the following deformation

δSCP het =

∫
d2x

{
−
∣∣∣W

′

1+1(σ)
∣∣∣
2
+
[
ζLW

′′

1+1(σ) χ̄R + h.c.
]}

, (2.43)

breaking N = (2, 2) down to N = (0, 2) . Here W1+1
′ enters as a two-dimensional su-

perpotential for the fermionic superfields containing the ζR fermions, and is a function of

the chiral superfield containing σ. Integrating out the axillary field χ now leads us to the

fermion constraints

ϕ̄l ξ
l
L = W̄

′′

1+1(σ) ζ̄L, ϕ̄l ξ
l
R = 0 . (2.44)

The right-handed fermion remains intact, while the left-handed fermion no longer decouples

from the orientational one. The right-handed fermion ζR as well as the translation modulus

z remain free fields.
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The general structure of the deformation (2.43) follows the N = (0, 2) supersymmetry.

ET suggested that the bulk and worldsheet deformation superpotentials should essen-

tially coincide

W1+1 ∝ W3+1√
ξ
, (2.45)

up to some constant normalization factor. The parameter
√
ξ is essential in order to map

a four-dimensional superpotential, which has dimension three, to a two-dimensional one,

which has dimension two. And ξ is exactly what physically enables us to map a four-

dimensional theory to a two-dimensional one through the Higgs effect, and the creation

of vortices. The analysis of [10] confirms eq. (2.45) at small µ.2 The exact coefficient

of proportionality can be evaluated by the fermionic zero mode overlap between ξL and

ζL (2.44). This computation has a tricky aspect. The solution for the zero modes can be

found in the leading order in µ/
√
ξ. Still, we can separate the solutions that are orthogonal

(∼ ϕ̄aξ̃R i) from the ones that are parallel (∼ ϕ̄aϕiζR) to the vortex orientation. The mass

µ does not change this feature. The point is that the fermion ξ̃, when confronted with the

ET action, corresponds to the shifted

ξ̃L i = ξL i −
ϕi

β
W̄

′′

1+1(σ) ζ̄L . (2.46)

The kinetic term, which is kanonical in terms of ζL and ξL i, gives now the cubic interac-

tion [10]

− i
|W ′′

1+1|2
β

∇Rϕ̄i ζL ξ̃L i + h.c. (2.47)

We then have to substitute the explicit zero modes solution and compute the coefficient in

front of the interaction. This interaction comes out of the fermions kinetic terms, in the

bulk action. This is the strategy that was pursued in [12].

In the large µ limit, namely µ≫ √
ξ, there is a transition to a different regime. Since

the mass of the ψ fermion becomes very large, we can neglect its kinetic term in (2.42):

and rewrite it in a simpler form

ψ̄ = −q
†
i

µ
ψ̄eq i and ψeq R i = iψ̄eq L i

−∇zψeq R i +
√

2
q†i q

†
l

µ
ψeq R i = 0 . (2.48)

We can see from the second equation that the ψeq i fermion behaves at large distance as

e−mlr/
√
r, in accordance with the light mass of (2.12). That means that, while the fermionic

modes ζR and ξl L remain confined in a region ∼ 1/
√
ξ, the left-handed ones become spread

over a radius ∼ µ/ξ. In the limit µ→ ∞, their behavior is the power law ∼ 1/
√
r and thus

they become non-normalizable.

2If µ becomes greater than
√

ξ, other corrections coming from the normalization of the kitetic terms

must be taken into account.
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3 Corner (A): Perturbed N = 2

Here we consider the corner (A), that is the perturbed N = 2 region. Here the superpo-

tential and the FI parameter are very small compared to the dynamical scale ΛN = 2 .

We can thus use the known results about the N = 2 strong dynamics, mostly ob-

tained with the Seiberg-Witten technique, and then the perturbations in the low-energy

effective Lagrangian.

The SW curve for nc = nf = n is the hyperelliptic surface defined by

y2 = P(n,n)(z) =
1

4
det(z − φ)2 − Λnzn , (3.1)

where the values of φ label the point in the moduli space of vacua. Massive deformations,

and supersymmetry breaking terms, lift the moduli space, leaving, in general, only a dis-

crete number of vacua. In the case of interest, due to the presence of the FI term, only one

vacuum survives: the so-called root of the baryonic branch.3

The root of the baryonic branch is located at the Zn invariant vacuum

φ = eiπ/ndiag(Λ,Λωn,Λω
2
n, . . . ,Λω

n−1
n ) , (3.2)

where ωn is the nth root of unity ei2π/n. The factorization of the curve in this point is

given by the following algebraic steps

P(n,n)(z) =
1

4

n∏

j=1

(z + eiπ/nΛωj
n)2 − Λnzn =

1

4
(zn + Λn)2 − Λnzn =

1

4
(zn − Λn)2 .(3.3)

Note the peculiarity that all the roots are doubled here. Away from u1 = 0, the singularity

splits into n different branches. The root of the baryonic branch is essentially the quantum

generalization of the concept of color-flavor locking. It is not the quantum generalization

of the concept of coincidence vacuum [4].4

Particles and charges can be put in a diagonal form, and are now given in the follow-

ing table

U(1)1 × U(1)2 × · · · U(1)n−1 × U(1)n
E1 1

E2 1
...

. . .

En−1 1

En 1

where Ej are the various charged hypermultiplets, accompanied by the partners Ẽj

with the opposite charge.

3Technically, there is no baryonic branch, since we are working with U(n) and not SU(n). But we still

use the name “root of the baryonic branch” for simplicity. Otherwise, more correctly, we should call it:

“root of the would-be baryonic branch, if it would not be for the U(1) F-term.” But this name is too long.
4Classically, instead, the origin of the moduli space, φ = 0, carries both properties, coincidence and

color-flavor locking. Coincidence vacua are always lifted by the presence of an FI term, and are, in general,

meta-stable vacua.
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Now let us examine SUSY breaking (from N = 2 down to N = 1) in the effective

low-energy theory on this vacuum, after introduction of a superpotential like (1.1). In this

case, the low-energy superpotential is

W =
√

2




n∑

j=1

ẼjAjEj + µu2(A1, . . . , An)


 . (3.4)

The potential is then

V =

n∑

j=1

(
2g2

j

∣∣∣∣ẽjej + µ
∂u2

∂aj

∣∣∣∣
2

+
g2
j

2
(|ej |2 − |ẽj |2 − 2ξ)2

)
. (3.5)

Each U(1)j is Higgsed by the condensation of the respective hypermultiplet Ej, Ẽj , and

each admits a formation of an ANO vortex. To compute the tension of these vortices we

can use the technique described in (2.29), where −ReW ′, ImW ′, and ξ are considered as

a triplet of the SU(2)R symmetry.

To compute the ẽjej condensate, from the vanishing of the FAj
term, it is more con-

venient to invert the matrix relationship and write it as

n∑

j=1

ẽjej
∂aj

∂ul
= −wl , (3.6)

where w = (0, µ, 0, . . . , 0) is the vector of coefficients of the superpotential. We can then

use the SW solution for the ∂aj/∂ul as period integrals of the holomorphic differentials,

∂aj

∂ul
=

1

2πi

∮

αj

zn−ldz

zn − Λn

=
1

Λl−1

ωn
j(n−l)

∏n
k 6=j(ωn

j − ωn
k)

=
1

Λl−1

ωn
j(1−l)

∏n−1
k=1(1 − ωn

k)

=
ωn

j(1−l)

nΛl−1
. (3.7)

The solution of eq. (3.6) is then given by

ẽjej = −µΛ ωn
j . (3.8)

For every l 6= 2, the sum 3.6 vanishes due to the complex phases. Only for l = 2 do the

phases cancel precisely and we get −µ.

The n vortices have degenerate tension:

Tj = 4π

√∣∣∣µΛe
i2πj

n

∣∣∣
2
+ ξ2

= 4π
√

|µΛ|2 + ξ2 . (3.9)

This computation is valid only in the small µ limit, where the second derivatives of the

superpotential have subleading contribution to the tension. But we know that these second

derivatives have the effect of making multiple vortices interacting, and, in particular, type I.
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As observed in [8], and then in [11], the heterotic vortex theory (corner (C) to be

discussed in section 5), predicts n degenerate ground states for the non-Abelian string,

and dynamical breaking of supersymmetry. So we find agreement with the finding of the

heterotic vortex theory: n degenerate non-BPS vacua/vortices. The physical interpretation

is that the n vortices we observe in the SW low-energy effective action are nothing but the

ground states of the non-Abelian heterotic vortex theory of corner (C).

Now we change the superpotential, and consider the possibility of a linear term of the

type (1.7). The low-energy effective superpotential becomes

W =
√

2




n∑

j=1

ẼjAjEj + µ(u2 − au1)


 . (3.10)

Physics is similar to the previously discussed case. Every U(1)j is Higgsed and is accom-

panied by the formation of an ANO vortex. The only difference is that the n vortices no

longer have degenerate tensions. We can still use eq. (3.6), now with w = (a, µ, 0, . . . , 0).

The solution is now given by

ẽje
j = −µ

(
Λ ωn

j − a
)
. (3.11)

The term proportional to a, when considered in the sum (3.6), affects only the component

with l = 1.

The coefficient a presents is in fact an explicit breaking of the Zn symmetry. Something

peculiar happens for the specific choice

a = Λe
i2πk

n . (3.12)

The tension of the vortices is now

Tj = 4π

√∣∣∣µΛ(e
i2πj

n − e
i2πk

n )
∣∣∣
2
+ ξ2

= 4π

√
|2µΛ sin π(j − k)|2 + ξ2 , (3.13)

and we can see that the k-vortex is BPS saturated, with the tension Tk = 4πξ.

We could have also used the following formula to compute the tensions [13, 14]:

Tj = 4π
√

|W ′(rootj)|2 + ξ2 , (3.14)

where “rootj” is the jth root of the SW curve (3.3). This is the quantum generalization

of (2.29). Derivation of this formula becomes particularly transparent in the MQCD formu-

lation of the theory. At the root of the baryonic branch, since all the roots are doubled, the

MQCD curve is composed by two disconnected parts: one that becomes asymptotically the

NS5-brane, and another the NS5′-brane. Superpotential deformation is obtained classically

by giving a certain shape to the NS5′-brane. Since in general the two branes are connected,

and become in MQCD a unique embedded Riemann surface, the superpotential acquires

quantum corrections by requiring the matching of the two branes. Since at the root of
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the baryonic branch they are disconnected, the superpotential does not receive quantum

corrections. There are though quantum correction to the tension of vortices. They come

from the point were W ′ should be computed. It must be computed where the distance

between the two disconnected branes is minimized, and this is not at the root of W ′, but

at the root of the SW curve.

4 Corner (B): Perturbed N = 1

This corner is the one where the strong dynamics is that of N = 1 SQCD in 3+1 dimensions.

The mass µ of the adjoint field is very large compared to the dynamical scale ΛN = 1 . We

can thus use the known results about the four-dimensional dynamics, and then consider the

FI term as a small perturbation to the last one. In some respects, what we are going to do is

very similar to what we have done in corner (A). The quantum effects are four-dimensional,

and treated with the known available techniques. The vortices that we observe are discrete

solutions, with no internal moduli space. We then interpret them as the ground states of

the heterotic vortex theory that we obtain in corner (C).

The classical theory has a moduli space of vacua, parametrized in a gauge invariant

way by the meson superfield

Mij = Q̃iQj , (4.1)

together with the two baryonic superfields

B = ǫα1...αnQ
a1
1 . . . Qαn

n , B̃ = ǫα1...αnQ̃
α1
1 . . . Q̃αn

n . (4.2)

These are not independent and obey the classical constraint

detMij −BB̃ = 0 . (4.3)

The light fields in the classical theory are M , B, and B̃ subject to the constraint (4.3).

The resulting manifold has singularities due to the massless gauge bosons, which emerge

when the symmetry breaking is not maximal.

In quantum theory, the classical constraint (4.3) is modified by the dynamical scale [15],

detMij −BB̃ = Λ2n . (4.4)

The manifold defined by (4.4) is smooth, and the singularities of the classical moduli space

have been resolved. At an energy scale smaller than Λ, the degrees of freedom are the

massless moduli of the manifold (4.4). The physical interpretation, at the base of the

manifold B̃ = B = 0, is that we have confinement and chiral symmetry breaking.

In our case, since we work in U(n) and not SU(n), there is also a residual U(1)B gauge

interaction, coupled with the baryons, which remains weakly coupled in the infrared. In

what follows, we want to consider the deformation with a small FI term
√
ξ ≪ Λ. In this

approximation, we just need to consider the mesonic and baryonic massless moduli (at

least for the chiral sector).

The situation we are going to face is analogous to the one considered in [21–23] re-

garding vortices in the presence of flat directions. The vortex core interacts with the extra
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massless q̃ fields. That even if the BPS solution, the ground state, is obtained by setting

q̃ = 0. Let us consider first the classical case (4.3), in order to briefly recall the basic

features of vortices in these circumstances. The vacuum manifold is parametrized by q and

q̃ subject to the D-term constraint

|q|2 − |q̃|2 = 2ξ . (4.5)

Let us call q̃ = 0, |q|2 = 2ξ the base of this Higgs branch. If we sit at the base, we can have

a perfectly well-defined non-Abelian vortex, like (2.18), while keeping fixed the boundary

conditions at infinity. The situation is completely different when we want to move away

from the base of the manifold. If we do so, the core of the vortex becomes a source for some

of the massless fields that compose these extra flat directions. The outcome is a logarithmic

tail, outside the core of the vortex. This means that is does not make sense to consider

a vortex with boundary conditions different from those of the base of the manifold. The

logarithmic tail inevitably sets the boundary conditions to infinity.

Now we consider the quantum moduli space (4.4). As the FI parameter satisfy
√
ξ ≪ Λ,

we can consider it as a deformation to this moduli space. The physical interpretation is the

following. The theory remains four-dimensional all the way down to
√
ξ. We can thus use

the known results about the strong dynamics of the N = 1 SQCD in four dimensions. The

low-energy effective theory contains mesons and baryons, subject to the constraint (4.4).

We then have the FI term that we can introduce at this level of the effective Lagrangian.

Its effects are in the D-term of the baryons. The presence of the FI parameter ensures that

the U(1)B gauge symmetry is broken, and this implies the existence of strings, similar to

the ordinary ANO vortex [8].

One could argue that the vortex string we observe in the pure N = 1 (large-µ) is just

an Abelian vortex, and thus has nothing to do with the non-Abelian vortex we discussed

in the small-µ limit. But note that since it is created by the winding of the baryon field

B, it has 1/n the charge of an Abelian U(1)B vortex. It thus have the same flux of the

non-Abelian string with respect to the U(1)B . Clearly, the string we observe in this limit is

the non-Abelian string, or at least the remnant of it. Non-Abelian moduli are not visible

because they are gaped by the strong dynamics. Here, and also in the previous corner (A),

they are gaped by the four-dimensional dynamics.

But we also have to discuss the important issue of the flat directions. Vortices exist

only if B̃ = 0, and they are also BPS. The quantum mechanical analog of the base of the

Higgs branch is now split into n different n different vacua parametrized by

Mij = 1ij Λ2 e
i2πk

n , (4.6)

with k = 1, . . . , n. The mesonic field is diagonal, and proportional to the n’th root of the

identity. Whenever we choose to move from one of these n bases, B̃ 6= 0, any vortex solution

must necessarily be non-BPS and have the log tail, typical of vortices in the presence of

flat directions.
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To find agreement with the other approaches, we must consider the effect of the oper-

ator obtained after integrating out the adjoint field Φ

W = − 1

µ
√

2
TrQQ̃ QQ̃ . (4.7)

This operator, in the low-energy effective theory, is a mass term that lifts the mesonic

moduli M , and forces the theory to live in the vacuum where M = 0. In the µ → ∞
limit, the operator clearly vanishes, but the information we are looking for (degeneracy

and susy-breaking of vortices) are all encoded in this 1/µ effect, and thus it is important

to keep track of this term.

Vortices are non-BPS, and this is due to the quantum deformation of the moduli space.

The effective superpotential (4.7) forces the vacuum to be at detM = 0, and this implies

BB̃ = −Λ2n. The size of this vortex is ∝ µ/Λ2, and in particular they become infinity

spread in the µ → ∞ limit. The vortex must have the following profile structure, in the

adiabatic limit µ≫ Λ:

B = eiθb(r) , B̃ = e−iθ b̃(r) , (4.8)

and for the meson

Mij = e
ik2π

n (b̃b+ Λ2n)
1
n 1ij . (4.9)

Note an important distinction with the semiclassical case (2.18). Classically, the vortex is

obtained by the winding of one of the n quarks, while the others are just spectators. Clearly,

the choice of the quark that makes the winding is arbitrary, and thus the emergence of

the classical moduli space. Every configuration, though, corresponds to a particular choice

of the quark, and thus the symmetry is broken down to U(1) × SU(n − 1). In the case

under consideration, the symmetry is not broken (4.9), and we have only a discrete n-

fold degeneracy. That is exactly what is obtained by an analysis of corner (C) with the

worldsheet effective action.

The degeneracy is not visible from the boundary conditions at r → ∞. It is encoded

in the value of the M field at the core of the vortex. We thus find agreement with the

other regions of parameters (A) and (C). We have n degenerate non-BPS vortices. The

degeneracy is not visible from the boundary conditions at r → ∞. The fact that in the

µ → ∞ limit the vortices are infinity spread is not in contradiction with our previous result.

We in fact do not expect quantitative agreement between the various approaches.

In the case of generic linear term in the superpotential, the effective generated super-

potential is

W = − 1

µ
√

2
Tr (QQ̃ QQ̃) +

√
2aTrQQ̃

= − 1

µ
√

2

[
Tr (QQ̃ QQ̃) − 2aµTrQQ̃

]
. (4.10)

where we have used the relationship (2.8) between the dynamical scales. Note that a does

not scale with µ. If we want to have vanishing B̃, and consequently a BPS vortex, the

meson must be in one of the n bases (4.6). This is obtained by choosing

a =
Λ2

N = 1

µ
e

i2πk
n = ΛN = 2 e

i2πk
n . (4.11)
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For this particular superpotential, we have a BPS string.

If we want to perform some concrete computation with these kinds of vortices, we need

some toy model that captures the essential properties we previously discussed. Vortices

are created by the condensation of the baryon, but due to its dimension, it is not clear how

to use it in an effective low-energy theory coupled to the gauge boson U(1)B . The solution

to this problem, would require knowledge beyond the chiral sector of the theory.

What we will study for now is a simplified model, which essentially corresponds to the

extreme case n = 1. We can thus say that B = Q, B̃ = Q̃ and the quantum deforma-

tion (4.4) is M = Q̃Q+ Λ2 We also used the adiabatic approximation, that is, we impose

the condition of the quantum-deformed manifold (4.4) over all the vortex profile. That is

a good approximation in the Λ ≫ µ limit since, as we shall see, the field variations become

slow enough to consider the constraint (4.4) valid at any radius. We can thus rewrite the

superpotential (4.7) for the mesonic field, in terms of the quark

W = − 1

µ
√

2

(
Q̃Q+ Λ2

)2
. (4.12)

The potential for the constituent quark q is thus

V =
1

2µ2

(
q̃q + Λ2

)2
(|q|2 + |q̃|2) +

g2

2

(
|q|2 − |q̃|2 − 2ξ

)2
. (4.13)

The meson mass term stabilizes the log tail typical of vortices with flat directions. Let

us call r the radial direction out of the vortex center. First there is a core consisting of the

BPS vortex. The core has width 1/
√
ξ. The q field goes from zero to

√
ξ, q̃ remains zero,

and the meson is equal to one of the n values of (4.6). There is then a tail where both

q and q̃ become of order Λ and the meson field goes to zero. As µ → ∞, these vortices

become infinitely spread. The ansatz for the profile functions is as usual:

Ak = −ǫkl
r̂l
r
f(r) , q = eiθ

√
2ξ q(r) , q̃ = e−iθ

√
2ξ q̃(r) . (4.14)

We present some numerical results for the vortex obtained with the potential (4.13),

with parameters e = 1, ξ = .5, Λ = 2 and µ = 100. The first two plots are some profile

functions for q and q̃. Figure 2 shows the core of the vortex, with also the gauge field

profile 1− f (as defined in (2.18)). Figure 3 is on a larger scale, where it is visible that the

tails of q and q̃ saturate to their vacuum expectation. Here we also plot
√

Λ2 + q̃q, which

is related to the mesonic condensate. Figure 4 shows the tension density. The first peak

corresponds to the ANO vortex in the core. The second peak starts when the q̃ field starts

to grow.

We can make a comparison with the tension formula obtained in the SW regime (3.9).

If we take this formula and extrapolate to the limit under consideration, we get

T = 4πΛ2
N = 1 + 4πξ + . . . (4.15)

The second term 4πξ2 corresponds to the tension of the BPS vortex in the core, roughly

the first peak in the tension profile of figure 4. The first term, the biggest one, should
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Figure 2. The vortex core, with the scalar fields profiles and the U(1)B gauge field.
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Figure 3. The profile functions for q, q̃ at bigger scale.
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Figure 4. The tension density, with the two peaks.

correspond to the second peak. But here, the formula (3.9) gives a result that is, in

general, far from the real value.

We need now to distinguish two regimes inside the corner (B). We need to compare

the mass of the light scalar field
√

2Λ2/µ with the mass of the photon mγ = e
√

2Λ.5 If

Λ

µ
≪ e (4.16)

5Since U(1)B is infrared free, the coupling is e−2
∼ log(Λ/Λcutoff ) with Λcutoff the high-energy scale

where SU(n) and U(1) are unified.
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we can for the moment ignore ξ in the potential (4.13), we can simplify it by setting

q = −q̃, and also rescaling by a
√

2 factor in order to have just one field q with the

simplified potential

V =
1

8µ2
|q|2

(
|q|2 − 2Λ2

)2
. (4.17)

The prediction 4πΛ2 is equivalent to the tension of a BPS vortex with the same condensate

given in (4.17). The SW formula is expected to capture in some sense the BPS aspect,

and in particular it fails in this region of parameter. If the conditions of corner (D) plus

the condition (4.16) satisfied, these vortices are strongly type I. The tension is smaller

than 4πΛ2 [23], and gets logarithmically suppressed ∼ .4πΛ2/ log(µe/Λ). That means that

the tension of the vortex is essentially dominated by the BPS core T ∼ 4πξ plus small

correction. This result is mirrored by what we shall find in the corner (D) of the quantum

heterotic vortex. Also here, for a reason also related to the flat directions, the quantum

corrections to the BPS tension, are vanishing (see (6.2)).

In the other case Λ/µ ≫ e the tension is now enhanced due to the fact the up to the

radius 1/mγ they are essentially global vortices. The tension, in this case, is logarithmically

enhanced: T ∼ 4πΛ2 log(Λ/(µe)).

5 Corner (C): Heterotic Vortex Theory

Now we deal with region (C), that of the heterotic vortex theory. We call it in this way

because as
√
ξ ≫ Λ, and µ still sufficiently small, all the 3+1 degrees of freedom are gaped

in the bulk, and the nontrivial dynamics happen only on the 1 + 1 worldsheet. Due to the

internal orientational moduli, the dynamic is highly non-trivial. The coupling runs and

becomes strong in the infrared. We can study the vacuum structure and mass spectrum

in the large n limit, following [11]. The technique is the basic one used in [16, 17] to solve

the non-supersymmetric and the N = (2, 2) CP(n − 1) model.

The new thing, with respect to [11], is that we want to consider the presence of a

generic linear term in the superpotential

W1+1 = ω

(
σ2

2
− aσ

)
(5.1)

We used the dimensionless coupling ω defined by

ω ∝ µ√
ξ
. (5.2)

For the superpotential µTrφ2/2, we can just quote the results of [11], and see that they

confirm the previous analysis of corners (A) and (B). We want now to perform the large-n

limit in the case of a generic superpotential (5.1).

The heterotic N = (0, 2) model, in the gauged formulation, consists of the bosonic

part (2.39), plus the fermionic (2.40), plus the heterotic deformation (2.43) which becomes

δSCPhet =

∫
d2x

{
−|ω|2 |σ − a|2 + [ ω ζLχ̄R + h.c.]

}
. (5.3)
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Note that the a parameter enters only in the potential for the σ field. The µ parameter

enters in the potential for σ, and also in the coupling between the χL and ζR. Integrating

over the axillary fields χ, we arrive at the constraints (2.44):

ϕ̄l ξl
L = ω∗ ζ̄L, ϕ̄l ξl

R = 0 . (5.4)

We need first to establish the n-scaling of the various parameters in the action:

β0 ∼ n , Λ3+1 ∼ n0 , µ, ξ ∼ n . (5.5)

The gauge coupling g2 scales like 1/n and that imply that the radius of the CP(n − 1)

manifold scales like β0 ∼ n. The dynamical scale ΛCP is thus constant. The scaling of µ

and ξ is in order to have all the physical scales mh and ml in (2.12) to scale like n0. From

now on, in this section, we use Λ to refer to the dynamical scale of the CP model.

In the gauge formulation, the Lagrangian is quadratic in the fields ϕ and ξ, and all the

interactions happens through the intervention of the auxiliary fields. We can thus integrate

them out, just computing the determinant of the quadratic form.

[
det

(
−∂2

k − 2|σ|2
)

det
(
−∂2

k +D − 2|σ|2
)
]n

. (5.6)

The first determinant comes from the boson loops while the second comes from the fermion

loops. Note that the ϕl mass is given by 2|σ|2 −D, while the fermion ξl mass is 2|σ|2. The

D field must vanish in order to have the supersymmetry unbroken.

Let us start as in [16] by first evaluating the expectation value for the auxiliary field D.

iβ + n

∫
d2k

4π2

1

k2 +D − 2|σ|2 + iǫ
= 0 (5.7)

We regularize the divergence by a rigid cutoff µRG in the momentum space, and the result is

2|σ|2 −D = µ2
RG e−4πβ/n = Λ2 (5.8)

with Λ the dynamical scale defined to be invariant under the change of the cutoff scale.

That also defines the renormalization of the coupling as:

β(µRG ) =
2π

g(µRG )2
=

n

4π
log
(µRG

Λ

)
(5.9)

The effective potential for the field σ is

Veff(σ) =
n

8π

{
Λ2 + 2|σ|2

(
log

2|σ|2
Λ2

− 1

)
+ 8|σ − a|2 u

}
. (5.10)

where instead of the deformation parameter ω we introduced the dimensionless parameter

u, which does not scale with n:

u =
π|ω|2
n

. (5.11)
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The minimum is given to the solution of the following equation:

2|σ|2
Λ2

= exp

(
−4u

σ − a

σ

)
. (5.12)

To have a supersymmetric solution, we need D = 0 and to solve (5.12). There are only

two possibilities for that to happen:

• µ = 0 This is the trivial N = (2, 2) case without the superpotential;

• a = Λ√
2

This is the non-trivial case we were looking for. A particular tuning of the

linear term in the superpotential preserves supersymmetry.

The next part will be devoted to the last particular case, and to solve for the spectrum of

the theory.

Before that, we want to consider the a = 0 case, when supersymmetry is broken, and

make a quantitative comparison with the tension formula obtained in the SW regime (3.9).

If we take this formula and extrapolate to the limit under consideration, we get

T = 4πξ + 2π
|µΛ3+1|2

ξ
+ . . . (5.13)

Clearly this is an extrapolation, behind the limit of validity of corner (A). But we want

nevertheless to make a comparison. The quantum effective potential for σ is (5.10) with

a = 0. the minimum is at σ = Λe−2u/
√

2, and the vacuum energy density is thus

V =
nΛ2

4π

(
1 − e−4u

)
= Λ2ω2 + . . . . (5.14)

This time the formula of corner (A) correctly reproduces the tension; at least up to a

proportionality factor, the parametric dependence upon Λ, µ and ξ is correct.6

We consider the effective Lagrangian for the fields Ak, σ, and χL,R. These fields acquire

a kinetic term through quantum corrections. In the large-n limit, the kinetic terms and

the couplings can just be computed evaluating the 1-loop diagrams with the n and ξ fields

running inside the loops. The effective action is

Seff =

∫
d2x

{
− 1

4e2γ
F 2

kl +
2

e2σ
|∂kσ|2

+
1

e2χ
χ̄R i ∂L χR +

1

e2χ
χ̄L i ∂R χL + ζ̄L i ∂R ζL

−V (σ) +
n

2π

Imσ

|σ| F̃ −
[√

2 Γσ χ̄RχL − ω χ̄R ζL + h.c.
]}

, (5.15)

where V (σ) is given in eq. (5.10), and F̃ is the dual gauge field strength F̃ = 1
2εkjFkj . Here

e2γ , e2σ, and e2χ are the coupling constants that determine the wave function renormalization

for the photon, σ, and χ fields. Γ is the induced Yukawa coupling. These couplings are

6We have not yet explicitly checked if also the numerical factor is correct. To do so, we should confront

the proportionality factor in (2.45) that, up to some numerical integral, has been computed in [10].
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given by one-loop graphs which we have been computed in [11]. For the case in which we

are interested, D = 0 and a = Λ/
√

2, they are

1

e2σ
=

1

e2γ
=

1

e2χ
=

n

4π

1

2|σ|2 =
n

4π

1

Λ2
, (5.16)

while the Yukawa coupling is

Γ =
n

4π

2

Λ2
, (5.17)

Since D = 0, they are exactly the same as the ones of the N = (2, 2) theory.

The (Imσ) F̃ mixing was calculated in [16] for N = (2, 2) theory. This mixing is

due to the chiral anomaly and is the term that gives mass to the photon in the effective

Lagrangian. The U(1) rotation of the field σ is broken by the anomaly down to Zn. Since

the anomaly is not modified by the superpotential deformation, we can use the same result

in the deformed N = (0, 2) theory.

In order to compute the spectrum, we need first to make a change of variables and

select convenient linear combinations of the fermions χR and ζR. The part of the action in

which they appear, rescaled by the coupling 1/e2, is:

Seff =
n

4πΛ2

∫
d2x

{
χ̄R i ∂L χR + χ̄L i ∂R χL + e2χ ζ̄L i ∂R ζL

− 2Λ χ̄R

(
χL − 2ωπΛ

n
ζL

)
+ h.c.

}
(5.18)

We can diagonalize the fermion mass making a change of variable from χL, ζL to χ̃L, ζ̃L:

χ̃L =
1√

1 + u
(χL − cζL) ,

ζ̃L =
1√

1 + u

(
c−1χL + ζL

)
, (5.19)

where c = 2ωπΛ/n. In this new basis, ζ̃L is totally decoupled, and we can just ignore it.

Furthermore, we want to factorize out the n factors, and also write explicitly the

quadratic expansion of the potential. The outcome is

Seff =
n

4πΛ2

∫
d2x

{
−1

4
F 2

kj + |∂kσ|2 (5.20)

+ ¯̃χL i ∂R χ̃L + χ̄R i ∂L χR −
[
2Λ

√
1 + u χ̄Rχ̃L + h.c.

]

−4Λ2(1 + u)(Re σ)2 − 4Λ2u (Im σ)2 + 2
√

2Λ (Im σ) F̃

}
.

We thus get that the fermions χL and χ̃R get together to form a massive Dirac fermion:

mχR
= meχL

= 2Λ
√

1 + u . (5.21)

From the quadratic term of the potential V (σ), we calculate the mass of the real part of

the σ field,

mRe σ = 2Λ
√

1 + u . (5.22)
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The anomalous (Im σ)F ∗ mixing in (5.20), and the explicit potential for Im σ, give masses

to both photon and the imaginary part of σ:

mγ = mIm σ = 2Λ
√

1 + u . (5.23)

The way to get this result is just a simple generalization of the argument of [16]. The pole

in the propagator is 2Λ
√

1 + u.

We see that all fields from the gauge multiplets have the same mass 2Λ
√

1 + u in

accordance with N = (2, 2) supersymmetry. It is curious that, although in a different way,

we obtain the enhancement of supersymmetry first hypothesized in [6]. One may argue that

this is just a consequence of the many approximations we are using here: first of all, the large

n limit; second the limitations on µ. But the supersymmetry enhancement is not dependent

upon these and has a more general explanation. If we have an heterotic theory that does not

break supersymmetry, and dynamically generate a mass gap, then we automatically have

enhancement supersymmetry to N = (2, 2). The reason is that to obtain a massive fermion

we inevitably have to take a left and a right fermion. This implies an extra degeneration

of multiplets. We thus obtain the effect of dynamical supersymmetry enhancement. The

reason behind that is not so different from that of [6]. With the transformation (5.19), we

have effectively decoupled the internal and the translational sector. The enhancement of

supersymmetry, if supersymmetry is unbroken, is then unavoidable.

Let us now discuss an issue about the quantum phase of the ϕ fields. The photon is

massive, but we have confinement. How is that possible? The issue here is hidden in the

1/n approximation. At the leading order in the 1/n expansion, we do not see confinement

because we are just expanding around the vacuum. The difference if the other discrete

vacua is a subleading term, and this is why confinement, which is certainly a feature of

this theory, is not visible at the leading order in the 1/n expansion.

We now discuss the limits of validity of the present computation. We essentially have

to satisfy the following two conditions:

Λ3+1 ≪
√
ξ , µ≪

√
ξ . (5.24)

The first one is clear. We want to break the gauge group at high energy, when the coupling

is still weak. Then we can compute the effective action on the vortex, just relying on a

classical zero modes analysis. The rest is done by the quantum dynamics of these zero

modes, which are described by the 1 + 1 action.

The second condition, µ ≪ √
ξ, is also important. As we move away from this satisfy

region, and µ becomes comparable or even bigger than
√
ξ, there are many features that

make the effective action (5.3) unreliable. First of all, the zero mode ξ has a different

shape, and width, with respect to the heterotic CP ones. That means that we should

take into account the modification of the coefficient in front of the kinetic term. The

superpotential W1+1 will also have corrections with respect to the four-dimensional one.

But, most importantly, it is not clear how to make sense of the 1+ 1 effective actions. The

next section will be devoted to the discussion of what happens in this region of parameters.
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6 Corner (D): Quantum Heterotic Vortex

The final corner is the one in which the theory is deeply N = 1, and the Fayet-Iliopoulos

breaks the gauge group when it is still in the weak coupling regime. This is also the most

controversial, and less studied region. Apparently it would seem the easiest case; everything

is weakly coupled. But there are problematic issues, on which, we hope, we can shed light

in what follows.

Let us start with the extreme limit, µ → ∞. We can forget about the adjoint field; the

theory is just pure N = 1 SQCD. The FI term breaks the gauge group at high energies,

where the gauge coupling is still small. Thus, there are no strong coupling ambiguities of [4]

about the vacuum. The moduli space is that of classical pure N = 1 SQCD, deformed by

the FI term. With µ very big, but finite, we would observe a small ∝ 1/µ lifting of the

Higgs branch.

Now we sit at the base q̃ = 0 of this manifold, and consider the non-Abelian vortex.

The non-Abelian vortex has thickness 1/
√
ξ, and it has both translational and orientational

zero modes. The vortex preserves half of the supersymmetries, N = (0, 2) on its worldsheet.

This implies that we have also the fermionic zero modes ζR and ξa
R, partners, respectively,

for the bosonic translational and orientational moduli. The other ones, ζL and ξa
L, become

non-normalizable in the µ → ∞ limit. They behave like 1/r at large distance, and this

is directly related to the presence of the extra massless moduli [10], the Higgs branch.

Since these modes are non-normalizable, we are not allowed to consider them in a 1 + 1

effective action. Their kinetic term would be infinite, and thus it would be infinitely costly

to excite them.

On the other hand, a 1 + 1 effective theory consisting only of the z, ϕa and their

heterotic superpartners ζR and ξa
R, is not consistent on its own. It suffers from a sigma

model anomaly [8]. In the gauge formulation, this is simply the anomaly for the auxiliary

gauge boson Aµ. On one hand, we are not allowed to consider the non-normalizable modes

in the effective action; on the other hand, we cannot write a consistent effective action

without them. This is a puzzle.

There is also another puzzle, apparently unrelated to the previous one but, as we shall

see, has the same origin. The analysis of corners (A), (B), and (C) gives a consistent picture,

with basically, the following result. The dynamics of the heterotic vortex, strongly depends

upon the linear term in the superpotential (1.7). For a generic value of a, supersymmetry

is broken, and the phase of the moduli ϕ is confining. Something special happens when the

linear term is set to zero; supersymmetry is still broken but we have n discrete degenerate

vortices; ϕ excitations are massive and not confined. Something else happens at the special

value a ∼ Λei2πk/n, when supersymmetry is restored, and also enhanced. These results have

been consistently checked independently in the three different corners (A), (B), and (C).

This dependence upon the linear term is quite embarrassing from the point of view

of the region (D). Since the adjoint field Φ is completely decoupled in this regime, we do

not expect all these different possibilities. The questions 1) and 2), about being or not the

vortex BPS and about the quantum phase of the CP moduli, should have only one answer,

and not depend on any external parameter regarding the interaction of the adjoint field

with our low-energy SQCD.

– 28 –



J
H
E
P
0
6
(
2
0
0
9
)
0
1
6

pseudomoduli ∼ ξ/µ

µ =
√

ξ

3 + 1 dynamics

µ

√
ξ

µRG

N
=

2

1 + 1 dynamics

ΛCP

N
=

1

Figure 5. A sketch of the RG flow (the energy scale µRG ) as a function of the adjoint field mass

µ. The lines in the graph have various physical meaning described in the text.

There is only one plausible answer to these issue: The dynamical scale ΛCP, in the

µ → ∞ limit, must go to zero. That means that there is no running of the 1 + 1 coupling

constant. β, which stays frozen to the classical value β0, from
√
ξ all the way down to the

infrared. This is the only possible answer to the previous puzzle; all the different phases

that depend upon the linear term a coalesce into a unique one in the corner (D). In what

follows, we shall explain the main physical reason for the freezing of the coupling.

We can elucidate better with the help of figure 5, where we plot various physical scales

in a µ vs. µRG graph, where µ is the mass of the adjoint field and µRG the energy scale of

the RG flow. We are in the semi-classical region
√
ξ ≫ Λ. Physics until µ ∼ √

ξ is well

described by the heterotic vortex theory, the analysis of corner (C). Note that the diagonal

line µRG ∼ µ is that where the four-dimensional theory passes from the N = 2 description

to the N = 1 one. The vortex theory is essentially unaffected as long as µ≪ √
ξ. In other

words, nothing special happens when the ΛCP line crosses the diagonal line. For energy

scales µRG bigger than
√
ξ, physics is four dimensional. At a lower scale, all the four-

dimensional degrees of freedom are frozen, and the only non-trivial dynamics can happen

on the 1 + 1 vortex worldsheet.

Instead, the transition that happens when the
√
ξ line crosses the diagonal is very

important. From now on, the fate of the fermionic zero mode ξL gets separated from that

of the CP moduli. Its width grows, and it is of order µ/ξ. Now we have to distinguish three

different regimes in the RG flow. Physics at energies above
√
ξ is four-dimensional. Physics

at energies below ξ/µ is 1 + 1 dimensional. In the intermediate region, the shadowed zone

in figure 5, we are in a hybrid situation. As we said, we cannot write an independent 1+ 1

effective action, since the fermionic zero mode still cannot be active. And they are crucial

in order to have a consistent theory. The four dimensional gauge dynamic, on the other

hand, is frozen since the gauge bosons are massive. But physics is, in some sense, still four

dimensional. There are in fact massless moduli in this range of parameters. The dynamical

scale of the 1 + 1 CP moduli is frozen. In other words, β is frozen to its classical value β0,
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Localization of heterotic CP(n − 1)

R ∼ µ/ξ

Massless mesons
β is frozen to β0

Quantum Heterotic Vortex

r ∼ 1/
√

ξ

Figure 6. The quantum heterotic vortex has two important scales.

and is patiently waiting for the fermionic mode to enter in the game. β starts to run only

at scales below ξ/µ.

In figure 6, we have a sketch of the two important length scales 1/
√
ξ and µ/ξ for the

quantum heterotic vortex. The CP heterotic zero models, ϕa and ξa
R, are localized in the

core of radius ∝ 1/
√
ξ. This vortex-core is immersed in a bath of almost-massless 3 + 1

moduli. At the radius ∝ µ/ξ, this moduli can be integrated out. This is also the scale of

the zero mode ξa
L.

We now give the physical reasons behind this freezing effect. In the regime we are

discussing, we have some massless CP modes confined inside the vortex, and then we have

other massless modes, four dimensional, that are not confined but can, as we shall see,

interact with the CP ones. It is clear that the vortex cannot have an impact on the four-

dimensional dynamics while the opposite is instead not true. The 1+1 dynamic is strongly

influenced, as we shall see dominated, by the surrounding four-dimensional fields.

We are interested in scales of energies below
√
ξ and above ξ/µ. The gauge bosons are

massive, and thus the four-dimensional dynamics is very simple, just the massless fields

of the Higgs branch. The coupling of the CP model β0 is given by (2.32). That means

that it is a function of the four-dimensional coupling g computed at the scale
√
ξ set by

the four-dimensional FI term. As long as the massless fields are there, the β cannot run,

otherwise this would imply that the dynamics of the vortex influence the bulk parameter

which, as we said, are fixed in these energies scales.

We can see this effect with a more direct computation of the vortex effective theory.

This action has the following structure:

Seff = S3+1 + S1+1 + Sint . (6.1)

It is the sum of a 3 + 1 action for the bulk massless moduli, plus a 1 + 1 action defined

on the string worldsheet that describes the orientation and translation moduli, plus an

interaction term. String moduli interact with the surrounding massless moduli in the bulk.
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That means that we are not allowed to consider S1+1 in isolation, and make the running

of the coupling constant as if it were an independent 1 + 1 system. We need to take into

account the interaction with the surrounding bath of 3 + 1 moduli. That dominates the

dynamics and keeps the β frozen, until also the 3 + 1 moduli become massive and can be

integrated out. The dynamical scale is thus computed starting the running only at the

scale ξ/µ, width the same β0 defined by (2.32). We thus have

ΛCP ∼ Λ3+1

√
ξ

µ
. (6.2)

ΛCP goes to zero in the µ→ ∞ limit.

The procedure to compute S3+1 and S1+1 is straightforward, and we can recall it in

the following way. We take the expansion of the fields around some classical solution:

q(r) = q(0) (r) + δmq(r)

q̃(r) = q̃(0) (r) + δmq̃(r)

Ak(r) = A(0)

k (r) + δmAk(r) , (6.3)

where the “(0)” refers to the classical solution, and δm is a generic fluctuation of a moduli

m, and δmq(r), δmq̃(r), δmAk(r) are the respective zero modes. For the case of S3+1, we

expand around the vacuum, and the moduli m are the residual massless fields of the Higgs

branch. For the case of S1+1, we expand around the vortex solution, and the moduli are

the orientational and translational ones. We then insert this into the original action, and

expand in powers of δm. If m is an exact moduli, there will be no explicit dependence on

m but only on its derivatives. The coefficient in front of the kinetic term ∂m∂m is then

computed as function of the respective zero modes.

To obtain Sint is instead not straightforward; we have to deal with some renormal-

ization issues. We have to expand around the vortex solution, but we have to consider

simultaneously the fluctuation of the vortex moduli ϕ, z, and of that of the bulk massless

fields δq̃. But as soon as we excite the q̃ field, a logarithmic tail comes out of the vortex,

and makes the tension infinite. That is certainly a signal that the vortex, and presumably

also its moduli, interacts with the surrounding massless fields. But to make a sensible

computation, we need some regularization procedure.

To obtain a finite result, we need to consider a fluctuation of q̃ with some wavelength

different from infinity. The tension of the vortex, and consequently also the interaction

terms S1+1, will depend on this scale. In particular, they all diverge if we try to change q̃

homogeneously in all the space, at zero wavelength. To simplify at most the computation,

we can just consider the space as if it is cylindrical and compact, with a cutoff radius 1/λ⊥.

The physical interpretation is that λ⊥ is the transverse energy scale of the q̃ fluctuation. In

this way, we have regularized the zero modes δq, δq̃, and δAk corresponding to the massless

bulk fluctuation. Otherwise, they all would have a log divergence in the IR far from the

vortex core.

We need to make an important distinction between parallel and orthogonal excita-

tions. Since we are dealing with a non-Abelian vortex, we have to choose some particular
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Figure 7. Vortex with δq̃ excitation parallel to its orientation.

orientation for the ϕ field to put in the zero solution of (6.3). The massless bulk fluctuation

δq̃ has also an orientation, and can be parallel or orthogonal to the ϕ field. The shape of

the zero modes strongly depends upon this choice, and this, ultimately, is the cause of the

interaction between ϕ and δq̃.

After the choice of parallel orientation (2.18), the problem can be reduced to the

following Abelian model:

L = − 1

4e2
FµνF

µν + |(∂µ − iAµ)q|2 + |(∂µ + iAµ)q̃|2 − e2

2
(|q|2 − |q̃|2 − 2ξ)2 , . (6.4)

where α = −1 in the parallel case and α = 0 in the orthogonal case. The ansatz for the

profile functions is

Ak = −ǫkl
r̂l
r
f(r) , q = eiθ

√
2ξ q(r) , q̃ = e−iθ

√
2ξ q̃(r) . (6.5)

The solution of figure 7 is obtained with this model for the parallel case α = −1, and with

the choice of parameters e = 1, ξ = .5.

In the parallel case, we have the log tail typical of vortices with flat directions. If

λ⊥ ≪ √
ξ, we can approximate them outside the core of the vortex with

δq(r) ∼ δq̃† log (rλ⊥) , δq̃(r) ∼ δq̃ log (rλ⊥) , δAk(r) ∼ 0 , (6.6)

where we used δq̃ as our δm. What happens inside the core is not very important, as long

as we consider a small enough cutoff λ⊥. The only important thing to know is that the

vortex core regularize the log divergence in the core, and all the fields go to zero. We show

an example in figure 7.

We can now take the fluctuations (6.3), with all the zero models z, ϕ, and δq̃ in the

vortex background, and insert this back into the Lagrangian (2.14). The term we are

interested in comes out very easily, just from the term:

S =

∫
d2x TV + . . .

=

∫
d2x

(
4πξ + log

(√
ξ

λ⊥

)
|δq̃|2

)
+ . . . . (6.7)
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This is the tension of the vortex, integrated over its worldsheet. In general, it is a constant

term that does not interfere with the higher-order terms containing the moduli interaction.

In the case at hand, the log tail of the scalar fields modifies the vortex tension, and this

introduces a mass term of the moduli δq̃.

Things are very different if δq is instead orthogonal to the vortex orientation. We

can see from (6.4) that the vortex sector Amu, q and the flat direction are completely

decoupled. It is so indifferent if we make the fluctuation δq̃ around the plain vacuum or

around the vortex:

δq(r) ∼ 0 , δq̃(r) ∼ δq̃ , δAk(r) ∼ 0 . (6.8)

We can thus extract from (6.7) the interaction term between the orientational moduli

ϕ of the non-Abelian string and the bulk fluctuation δq̃ of the Higgs branch:

Sint ∼ log

(√
ξ

λ⊥

)
1

β

∫
d2x

∣∣∣ϕl δq̃l

∣∣∣
2
. (6.9)

Note that if we consider the renormalization of the coupling constant β = β0 log(µRG /
√
ξ),

and make the renormalization scales (transversal λ⊥ and longitudinal µRG ) equal, we get

Sint ∼
1

β0

∫
d2x

∣∣∣ϕl δq̃l

∣∣∣
2
. (6.10)

We now give our argument for the existence of the abovementioned conformal window.

In the window of energy scales below
√
ξ and above ξ/µ, the action of the vortex is of

type (6.1), with a the interaction (6.10). We want to write an effective action, effective

from two points of view. One because we want to integrate out the 3+1 degrees of freedom

of the bulk Higgs branch; the second because we want to consider it at some energy scale

µRG . The RG flow must be done scaling simultaneously the longitudinal and traversal

scales, so that λ⊥ in (6.9) is essentially µRG . The effective action, constrained by the

N = (0, 2) supersymmetry, must be of the following kind

Seff = − iZ(µRG )

2

∫
d2x d2θR Φ̄l(∂L − iU)Φl

+
τ(µRG )

4

∫
d2x dθR Υ|θ̄R=0 + h.c. ,

+
1

8e2Υ

∫
d2x d2θR Υ†Υ , (6.11)

where Z(µRG ) is a wave-function renormalization, obtained integrating out the 3+1 fields.

The renormalization of τ(µRG ) is instead due to the 1 + 1 loops, and is given by the usual

logarithmic scaling.7 We can separate the two quantum effects because the Higgs branch

fields do not communicate directly with the Υ fields. The 1+1-loop has to cancel out with

the 3+1 quantum effects, otherwise the action is not consistent. If Z(µRG ) ∼ τ(µRG ), then

7Φl is the chiral superfield containing ϕl and ξl
R. U is the vector superfield containing D, χL and Aµ.

Υ is a Fermi multiplet, and is the field strength of U . The reader can consult [7] for the conventions.
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ϕ

q̃

D

ϕ

Figure 8. Two diagrams coming from the quantization of the action 6.12. The first is the wave-

function renormalization for ϕ. It is a two-loop diagram: one loop is four-dimensional, and the

other two-dimensional. The second graph the one-loop renormalization of the coupling β; it is a

tadpole for the auxiliary field D.

the action is conformal and there is no dynamical scale generated. The kinetic term for Υ

is infinite, since it is proportional to 1/Λ, and so there are no anomaly inconsistencies.

To see the physical reason for this cancellation, we consider the simplified action

S =

∫
d4x |∂µq̃l|2 +

∫
d2x

{
|∇kϕ

l|2 +D(|ϕl|2 − β) +
1

β

∣∣∣ϕl q̃l

∣∣∣
2
}
, (6.12)

in which we have just taken into account the scalar fields ϕ and q̃. We have also simplified

because we do not consider, in full detail, the Higgs branch and its metric. But for the effect

we are interested in, this toy-model captures all the essential features. The renormalization

of the wave-function of the ϕ is given by the first diagram in figure 8. It is a 2-loop

diagram involving two interaction vertices with the four-dimensional field q̃, and three

propagators. One of the loops is four-dimensional; the other is two-dimensional. In total,

the divergence is a logarithmic one
∫
d6k 1

k6 ∼ log µRG . The renormalization of the coupling

constant is given by the second diagram in the figure. It is a tadpole for the auxiliary field,

and it involves one two-dimensional loop and one propagator. It is logarithmic divergent∫
d2k 1

k2 ∼ log µRG . And gives the usual logarithmic running of the coupling β. The

physical coupling is obtained by β divided by the wave-function renormalization of ϕ, and

thus the theory remains conformal. This is the same cancellation that happened from (6.9)

to (6.10). The kinetic term for the auxiliary field Aµ, involves one two-dimensional loop of

the field ϕ, with two propagators. It has no UV-finite, but IR-divergent:
∫
d2k 1

k4 . If the

theory generate a mass gap, then we usually put Λ as the IR-cutoff, and thus we get the

quantum kinetic term for Aµ (5.16). In the present situation, there is no mass generation,

and the diagram is ∞, and that means that the gauge field is decoupled (eAµ = 0), and

there are no problems for the anomaly.

7 Conclusion

In this paper, we have considered various aspects of the quantum heterotic vortex, for

number of colors equal to the number of flavors nc = nf = n. We focused in particular on

four regions in the parameter space spanned by the mass µ and the FI term ξ (figure 1).

These are the four regimes where quantum effects can be, somehow, treated using known
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techniques. We found agreement between the various approaches, in particular with respect

to the qualitative feature about being or not the string BPS, and about the quantum phase

of the internal CP moduli.

Clearly, the FI parameter, and the mass for the adjoint field, have a big impact on

the dynamics of the theory. Physics changes considerably, as we move in the parameter

space spanned by µ and ξ. Many qualitative feature, though, remain the same and can be

checked, and compared using the various approximations. A physical idea that permeates

the paper is that strings that we detect in the four-dimensional approaches, such as (A)

and (B), are nothing by the remnants, or ground-states, of the quantum dynamics of the

non-Abelian string that we find in the worldsheet approaches, such as (C) and (D).

The goal, for the moment, was to provide an overall picture of the entire parameter

space. There are aspects of this paper, though, that deserve a more detailed discussion.

Two are of particular importance.

The analysis of corner (B) in section 4 provides the mechanism to understand the

n-fold degeneracy from the point of view of the meson-baryon description. Essential is the

quantum deformation of the moduli space (4.4) that triggers this degeneracy. Although the

argument is solid, we still lack an elegant way to write an effective theory that incorporates

both the U(1)B gauge, the baryons and mesons, and the quantum deformation (4.4). The

example (4.12) is valid in the extreme limit of n = 1. Although it captures some essential

effects, like the stability of the log tail and the meson condensate in the interior of the

vortex, it lacks incorporation of the degeneracy (4.9) in a dynamic fashion. A proper

treatment for n > 1 is highly desirable.

The analysis of corner (D) is not yet complete. We were able to show that in this regime

the vortex zero modes interact with the external bath of 3 + 1 particles. This implies that

the 1 + 1 effective theory should not be considered in isolation, and in particular that the

β coupling should not run just according to the 1 + 1 loops computations. We conjectured

that β remains frozen to β0, from the scale
√
ξ of the Higgs breaking, down to the scale

ξ/µ of the light mesonic fields.

The freezing of the coupling constant is something that we need for consistency, and

we also gave physical arguments for that. First of all, the S1+1 theory by its own is not

a consistent QFT, since we have only left fermions and no right ones. There is thus an

anomaly for the gauge field Aµ. Even if we forget about the other terms in (6.1), we cannot

quantize S1+1 in isolation. Another fact is that the answers to the two questions posed in

the Introduction depend upon the linear term in the superpotential. And this is hardly

understandable from the point of view of the deep corner (D), pure SQCD without the

adjoint field. The existence of the interactions Sint between the 1 + 1 and 3 + 1 degrees

of freedom is the crucial point in order to solve these puzzles. This is what should make

the theory consistent and anomaly free. The conjecture is that the only way to make a

consistent, gauge-anomaly-free, quantization of (6.1), we need to have a conformal window,

between the scales
√
ξ and ξ/µ where the coupling g does not run. We gave some heuristic

arguments for why, and how, this cancellation happens.

There also other aspects of corner (D) that deserve more careful analysis. The inter-

action (6.9) should also be formulated in a supersymmetric way. A possibility could be the
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following N = (0, 2) superpotential-like term

Sint ∼ g0

∫
d2xdθR Ψi

q Φl Q̃
l
i

∣∣∣
θ̄R=0

+ h.c. , (7.1)

where Ψi is the Fermi multiplet containing ψq L, Φl the chiral superfield containing ϕl,

ξl R and Q̃ the chiral superfield containing q̃, ψeq L. It should be possible also to write it

in a geometric way, as an interaction between the geometric CP(n − 1) manifold on the

worldsheet and the moduli space of the Higgs branch in the bulk. It is also true that this

is not the unique interaction. Other interactions should be present, in particular, the ones

that involve the translational sector.

The next step in the heterotic vortex saga is that of nf higher than nc. In trying

to generalize these ideas to higher nf , we encounter one major obstacle, already at the

N = 2 level (i.e., without µ breaking terms). There are extra moduli, and a Higgs branch,

already at N = 2. The non-Abelian vortex becomes semi-local, and the radius is no longer

fixed at 1/
√
ξ. It is not clear how to make sense of an effective vortex theory in these

circumstances. It is not clear how to disentangle the 3 + 1 dynamics from the 1 + 1. The

situation we encountered in this paper in corner (D), may be instructive in this respect.

The massless moduli have the effect of freezing the dynamics of the 1+1 vortex. But there

is also an important difference, which we never encouter in the present paper: semilocal

vortices have size as a bosonic zero mode.

We can anticipate a few of the new features of the nf > nc case. The equivalent

analysis for corner (A), the perturbed N = 2, is a straightforward generalization of what

we have done in section 3. The SW curve, at the root of the baryonic branch, factorizes as:

P(nc,nf )(z) =
1

4
z2(nf−nc)

(
z2nc−nf − Λ2nc−nf

)2
. (7.2)

The difference with respect to (3.3) is that there are 2(nf − nc) roots located at z = 0.

The others are located in a Z2nc−nf
symmetric way at z = ω2nc−nf

Λ. The roots located

at zero gives a low-energy SU(ñc) theory, where ñc = nf − nc, with nf fundamentals

hypermultiplets; it is infrared free, since 2nf > ñc [5]. With the superpotential (1.1) and

the FI term, we have a BPS vortex The other Abelian vortices, coming from the Z2nc−nf

symmetric roots, are instead non-BPS and behave much in the same way the ones we

discussed in this paper.

The relation between corner (A) and corner (C), for example, should thus provides

an insight into the dynamics of semilocal vortices. Their moduli space has been widely

studied from a semi-classical perspective [25–27]. In corner (C) we have a semilocal vortex

with (nc, nf ). In corner (A) we have a BPS semilocal vortex with (ñc, nf ), plus 2nc − nf

abelian non-BPS vortices. What we find in the corner (A) analysis, should correspond to

the ground states of the theory in corner (C). It looks as if there is a CP(2nc − nf) sub-

sector of the semilocal vortex which goes into strong coupling effect, plus another sector

which contains all the semilocal moduli, which has no strong coupling effect and shows in

the low-energy as a semilocal BPS (ñc, nf ) vortex. The explanation for this, could reside

in the q̃ flat directions, much in the same way of corner (D) in section 6.
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